SENIOR CAPSTONE/ **SENIOR DESIGN EXPERIENCE** 2025


- Design a sustainable, artisanal Brie cheese production process
- Explore the use of *Penicillium biforme* as an alternative mold
- Address the genetic vulnerability of traditional strains

BACKGROUND

Market Size

The global cheese market was valued at \$172.6 billion in 2023, projected to reach \$222 billion by 2033, driven by increasing demand for artisanal/specialty cheeses (Bharatrao Lomate & Deshmukh, 2017)

Target Consumer

Those interested in authentic, artisanal foods, sustainability, and premium gourmet cheese experiences.

Industry Challenge

Brie production relies on a genetically uniform mold strain, making the industry vulnerable to pathogen outbreaks and environmental

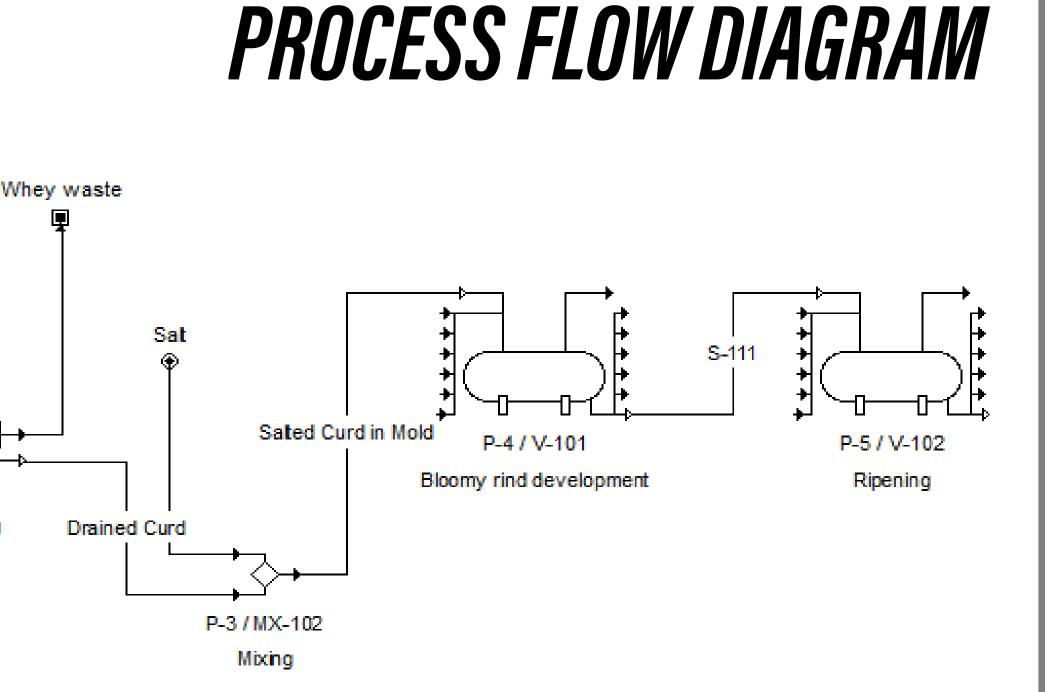
PRODUCT OVERVIEW

- A Brie cheese product consisting of pasteurized cow's milk(whole), salt, and a white mold
- *Penicillium candidum* is traditionally used, however this strain is genetically at risk. The chosen alternative in the Brie is *Penicillium biforme* due to its flavor, texture, and white rind formation

OPTIMIZATION

Pasteurization (HTST)	• 72 °C for 15 seconds
Coagulation	 pH: 6.5 31 °C for 60 minutes Rennet Concentration: 0.0013 g/L
Molding/Shaping	Pneumatic pressing system0.3 bar
Ripening	 14.2°C 92% Relative Humidity

Instructor: Dr. Martin Okos Advisor: Daniel Hauersperger


Brie Reinvented: A Sustainable Future with Penicillium biforme

Courtney Usher¹, Ella Jameson¹, Sophia Sansone², Jora Pugliese², ¹Biological Engineering – Cellular and Biomolecular; ²Biological Engineering - Food and Biological Processes

Whole Mill ͱ⊘ͱ P-2/HX-101 Heatino P-1/FR-101 Fermentation Curd Geotrichum Candidu Pennicilium Candid P-6 / SP-101 Screw Pressing Mesophillic Cultures 🕀 Rennet **Nutrition Facts** B# 1 B# 2 B# 3 B# 4 20 servings per container **Serving size** 100 Calories Trans Fat 0g dium 190m otal Carbohydrate ietary Fiber 0g - 72 | 144 | 216 | 288 | 360 | 432 | 504 | 576 | 648 | 720 | 792 | 864 | 936 | 1008 | 1080 | 11: alcium 120mg day 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 % Daily Value (DV) tells you how much a nutrient erving of food contributes to a daily diet. 2,000 calo **UNIT OPERATIONS Unit Operation** Utilization Milk is heated to eliminate harmful Pasteurization bacteria Curd formation occurs from the Coagulation addition of rennet Molding/Shaping Curds are placed in molds to form shape Cheese is aged to develop flavor Ripening and texture **ECONOMIC RESULTS**

Final Product: The amount of rennet was varied **Financial Component** Value experimentally to optimize consistency and creaminess \$588,132.83 Total Capital Investment Total Production Cost \$392,223.17 **Ingredients Used:** Whole Milk, *Geotrichum candidum*, Cost/Batch \$1,002.23 Mesophilic Culture, *Penicillium biforme*, Cheese Salt, Veal Calf Rennet Cost/Unit \$1.57

EXPERIMENTAL DESIGN

Pasteurization

• Eliminate pathogenic and spoilage microorganisms • HTST

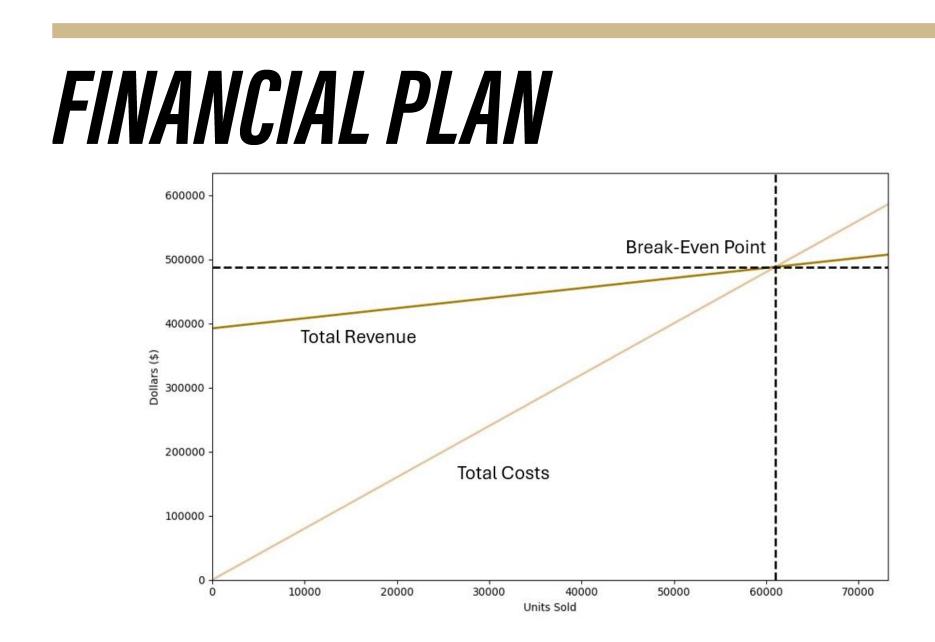
Fermentation

 Milk inoculated with mesophilic culture, Geotrichum candidum, and Penicillium biforme

Coagulation

- Enzymatic curd formation using veal calf rennet.
- Target pH: 6.3

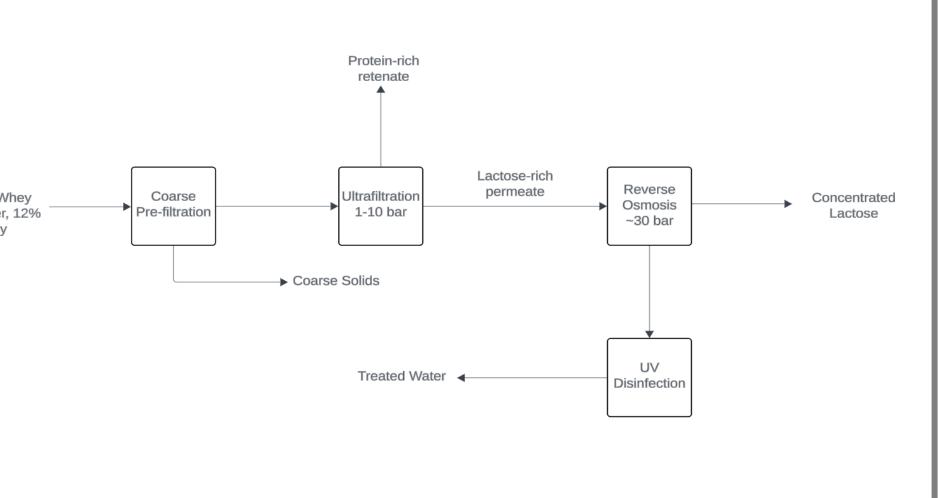
Molding, Pressing and Draining


- Curds shaped into wheels and drained naturally in molds
- 22-24°C

• Ripening

- Aged at 14.2°C and 92% humidity for 2-6 weeks
- Regular flipping and airflow promote uniform surface mold development

Excess Whey 88% Water, 12% Whey



Enhand Quant Effect

Agricultural and Biological Engineering

WHEY TREATMENT

BYPRODUCT RECOVERY

Whey byproducts contain compounds such as protein, lactose, and organic nutrients. The system can recover these components using ultrafiltration, lactose

crystallization, and biological processing. These strategies transform waste into high-value products, supporting zero-waste goals and enhancing economic sustainability.

Break-Even Point occurs at the sale of **59,998 Units**

FUTURE RECOMMENDATIONS

cement	Test additional mold strains to modify the flavor profile
e cement	Adjust ripening and aging times to change texture
ify Strain	Analyze microbial dynamics throughout production process to determine effect of different mold strains

Acknowledgments to Amanda Limac & the Agricultural and Biological Engineering Department, Purdue Engineering, and Purdue University.